TRANSBOUNDARY WATER RESOURCES MANAGEMENT IN EUROPE WITHIN THE FRAMEWORK OF WFD 2000/60

Y. Mylopoulos

ARISTOTLE UNIVERSITY OF THESSALONIKI

Dept. of Civil Engineering

Division of Hydraulics and Environmental Engineering

Transboundary water resources

- ➤ 40% of the world's population live in transboundary catchment areas, shared by more than one country
- The political dimension of Water becomes highly important
- Need for concerted management and harmonization of policies

Transboundary water resources

- Water should be managed in an internationalized way, integrating methodologies and techniques from the areas of international relations and diplomacy
- Sustainable Development introduced the need for the Green, or Environmental Diplomacy
- Principles of "Hydrodiplomacy"
- > Need for Conflict Resolution Methods

Transboundary Water Management in Greece

- Major issue for Greece
- Downstream country in 4 out of the 5 shared rivers
- 25% of the country's renewable resources are imported
- The management policy of the upstream countries affects directly the development and the environmental protection downstream

Legal Framework

- ➤ 1992: UNECE Convention, "The Protection and Use of Transboundary Watercourses and International Lakes"
- ➤ 1997: UN Convention, "Convention on the Law of the Non-navigational Uses of International Watercourses"
- 2000: Directive 2000/60 of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy, "Water Framework Directive"

TRANSBOUNDARY WATER MANAGEMENT ACCORDING TO THE WFD

- River Basin Management and Integrated Water Management are introduced, not only for the EU countries, but also for the countries having boundaries with them
- A common framework is provided between neighbor countries, for the co-operation, planning and management of water resources

Nestos/Mesta Basin

The Reference Area

Main economic activities: agriculture, forestry, power industry, cattle breeding and recreation.

Agriculture

Water source: Nestos river

4 irrigation systems (2 GR-2 BG)

GR: total irrigated land ~130km² at the Delta region

BG: total irrigated land ~175km²

Hydropower

2 dams constructed in GR (425GWh) 3 dams in progress in BG (7.4 KWh)

The Reference Area

Problems – Objective analysis

Water quality-quantity

Environmental protection

The Greek- Bulgarian case study

- Different socio-economic conditions between the two countries
- The political situation with the transition phase to the free market - economy in Bulgaria is still unclear
- No common water management and environmental protection plans have been established
- No joint monitoring systems along the river exist
- Lack of integrated water management & allocation

The G-B Agreement of 1995

- > 29% of the river flow to be received by Greece
- Exchange of information
- Establishment of a cross-border Committee
- > Enforcement period: 35 years

Compliance With the WFD

WFD

- > River Basin Level
- Economic analysis of water use
- River BasinManagement Plan
- Public Participation

G-B Agreement

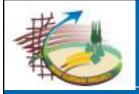
- ⇒ Nestos River
- ⇒ No reference
- ⇒ No preparation
- ⇒ Only authorities involved

European projects

www.ironcurtainproject.com

www.transcat-project.net

1RON CURTAIN 2001-2004 **TRANSCAT 2003-2006**


5th Framework Programme "'Quality of Life and Management of Living Resources"

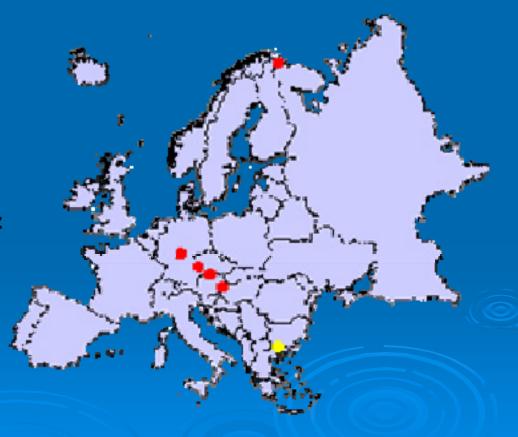
5th Framework Programme "Energy, Environment and Sustainable Development"

Key Action 5 "Sustainable Agriculture, fisheries and forestry and integrated development of rural areas including mountain areas"

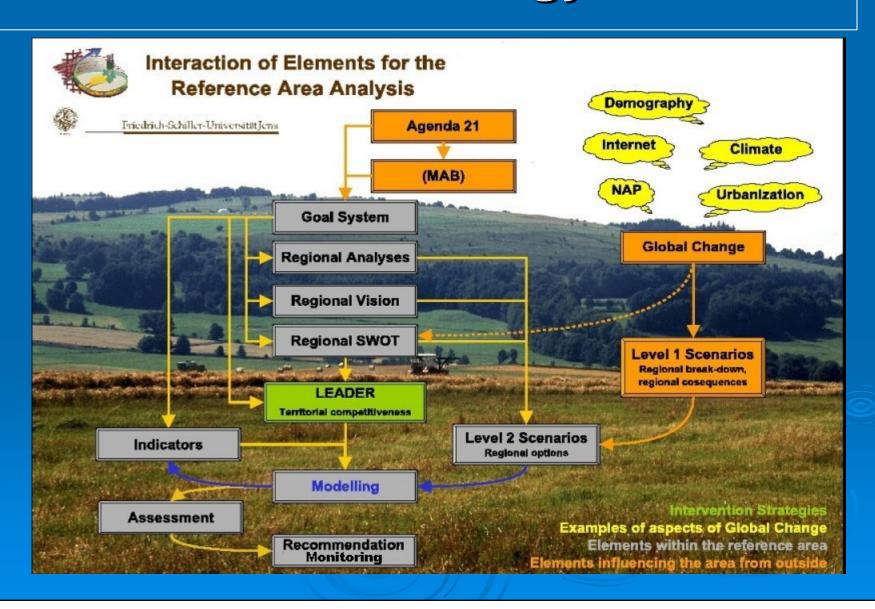
Key Action 1 "Sustainable Management and Quality of Water"

THE IRON CURTAIN PROJECT

5th Framework Programme 'Quality of Life and Management of Living Resources'
EC-Project Contract No: QLK5-CT-2001-01401

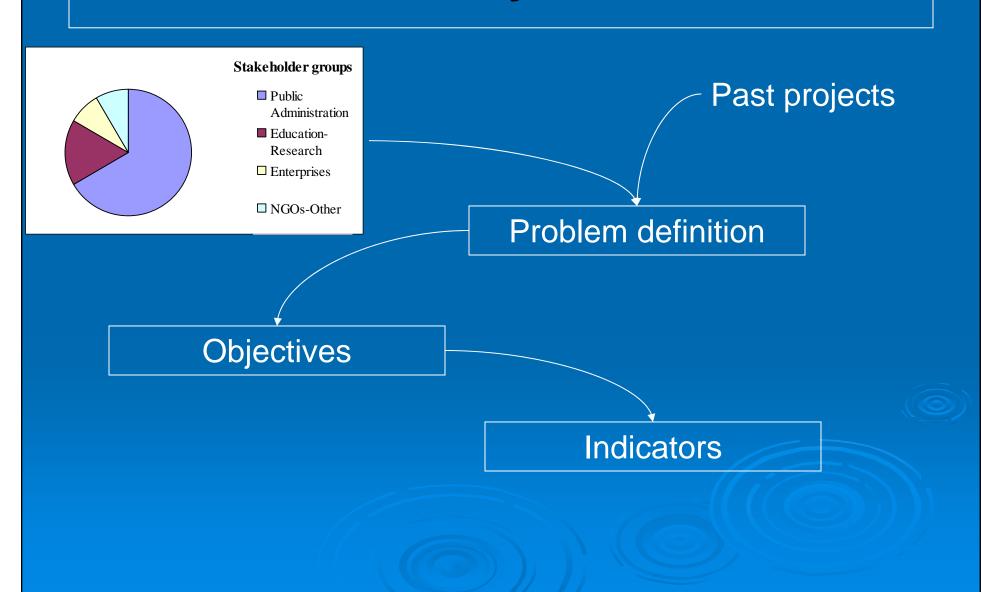

Title: INNOVATIVE MODELS OF CRITICAL KEY INDICATORS AS PLANNING AND DECISION SUPPORT FOR SUSTAINABLE RURAL DEVELOPMENT AND INTEGRATED CROSS BORDER REGIONAL MANAGEMENT IN FORMER IRON CURTAIN AREAS BASED ON NORTH TO SOUTH EUROPEAN REFERENCE STUDIES

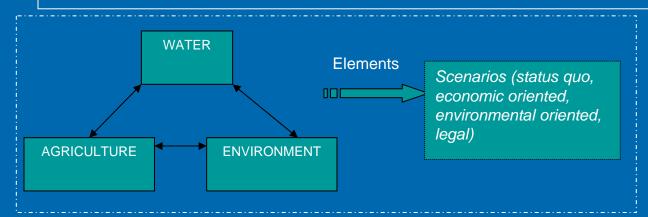
Objective: Development of a methodology leading to standardized tools and procedures for integrated


to standardized tools and procedures for integrated resource evaluation, analysis and management following the principles of sustainable development

Main features

- ✓ 2001-2004
- ✓ Six pilot areas
- Participants from eight countries
- Harmonization of methodologies
- Bilateral cooperation


Methodology


Application

- Logical Framework approach (stakeholders, problems and objectives analysis)
- Regional analysis (Data collection, GIS, land uses)
- > SWOT
- > Indicators
- Development scenarios (water-environmentagriculture)
- Modeling (Emergy analysis)

Goal system

Modeling

Major conclusion:

Increased profitability by sustainable use of resources in optimized crop mix

•the ecological scenario is generally more sustainable than the economic ones

•legal scenario shows considerable improvements in relation to sustainability compared to the status quo (considerable short term alternative)

WEYR Water emergy yield ratio per ha

NED Non-renewable empower density/ha

ELR Environmental Loading Ratio per ha

EYR Emergy yield ratio

Renewable sources
No renewable sources
Labor
Services
Purchased inputs

Transformities

Conclusions

- Information and education of farmers about the economic sustainability of crop production
- Integrated evaluation of agricultural practices using, both economic and environmental, cost-benefit analysis
- Changes in crop mixes can lead to higher profit, less water demand and higher Sustainability Index. Social impacts should not be ignored
- Evaluation of effects in current water uses from alterations in river flow

Need for inter-sectoral integration

Conclusions

- Effective cooperation based on the principles of good neighborliness and reciprocity
- Thorough water mass balance can provide information for the allocation of the water
- Amelioration of the infrastructure
- Alterations in current agricultural practices (to more sustainable ones)
- Plan for ecosystem management
- Local actors involvement

Need for transboundary integration

THE TRANSCAT PROJECT

5th Framework Programme 'Environment and Sustainable Development Programme'

EC-Project Contract No: EVK1-CT-2002-00124

Objectives

Main objective:

Creation of an operational and integrated comprehensive DSS for optimal water management in borderland regions, in compliance with the WFD

Sub-objectives:

- Identification of conflicts
- Analysis of legal framework
- Bilateral cooperation & exchange of data

THE TRANSCAT PROJECT

First results

- Meetings with stakeholders
- Cross-border Steering Committee Meeting
- European platform for co-operation
- Development of DSS prototype
- > Water-related Indicators

TRANSCAT DSS

Data Management

Data Visualization

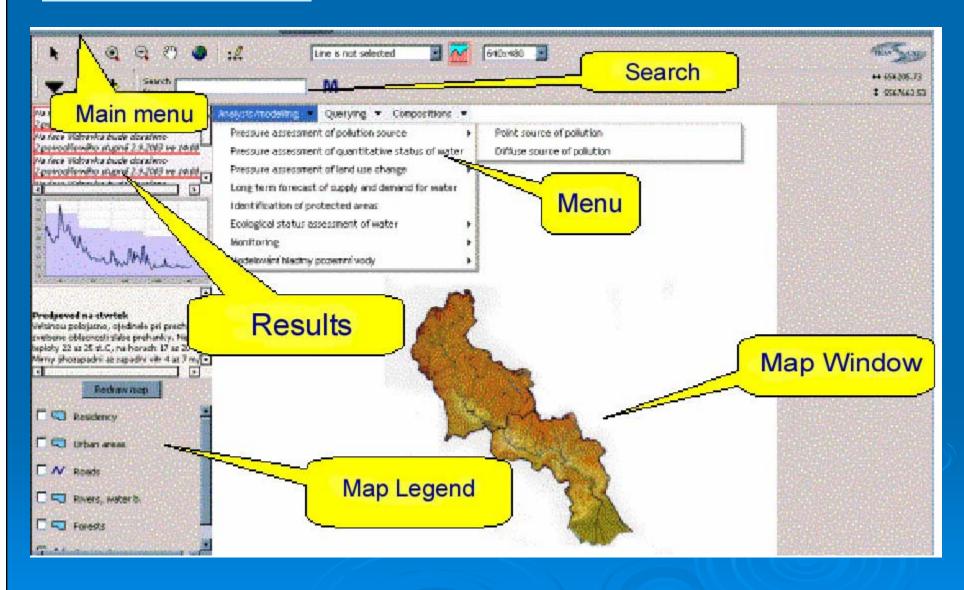
+

Modeling Tools (Quantity, Quality)

+

Decision Analytic Tools (MCDM Tools, Mulino)

TRANSCAT


Decision Support

System

Implementation to 5
Pilot Areas

DSS PROTOTYPE

Conclusions

- > Lack of integrated management approach
- > Need for common vision, methodologies
- Public Participation
- Conflict Resolution
- Political willingness for cooperation
- > Inter-country confidence