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Historically, surface water has been the main source Historically, surface water has been the main source 
of water for human consumption, as it was easy and of water for human consumption, as it was easy and 
cost effective to access. cost effective to access. 
However, increased rainfall shortages, especially in However, increased rainfall shortages, especially in 
areas such as the Mediterranean islands, have areas such as the Mediterranean islands, have 
resulted in increased use of groundwater resulted in increased use of groundwater 
Demand: domestic, agricultural and Demand: domestic, agricultural and 
environmental/ecosystem preservation. environmental/ecosystem preservation. 
Groundwater withdrawals now constitute one third of Groundwater withdrawals now constitute one third of 
the world's freshwater consumption. the world's freshwater consumption. 
This extensive use has resulted in :This extensive use has resulted in :

depletion of groundwater resourcesdepletion of groundwater resources
biodiversity loss due to adverse effects on wetlandsbiodiversity loss due to adverse effects on wetlands
pollution of groundwater resources because of percolation pollution of groundwater resources because of percolation 
of pollutants associated with agricultural activitiesof pollutants associated with agricultural activities
seawater intrusion in coastal aquifers seawater intrusion in coastal aquifers 



The needs for groundwater resources along with the The needs for groundwater resources along with the 
acute scarcity of groundwater in many parts of the acute scarcity of groundwater in many parts of the 
world, gives rise to the necessity of making choices world, gives rise to the necessity of making choices 
about how this resource should be allocated among about how this resource should be allocated among 
competing uses and over time. competing uses and over time. 
This is a very interesting management problem.This is a very interesting management problem.
The purpose of the present paper is:The purpose of the present paper is:
to present some conceptual models related to the to present some conceptual models related to the 
management of groundwater resourcesmanagement of groundwater resources
to compare sociallyto compare socially--optimal and privatelyoptimal and privately--optimal, or optimal, or 
atomistic, management rules and outcomes using atomistic, management rules and outcomes using 
game theoretic solutions game theoretic solutions 
to explore decentralized policy schemes, in the form to explore decentralized policy schemes, in the form 
of water taxes, that can be used to sustain sociallyof water taxes, that can be used to sustain socially--
optimal use of groundwater resources.optimal use of groundwater resources.



Groundwater Management: SociallyGroundwater Management: Socially--
Optimal and Game Theoretic SolutionsOptimal and Game Theoretic Solutions

Let  ( )tS   denote the groundwater stock level at time  t , Let  ( )txi   represent 
groundwater extraction by agent  ,,...,1 ni =   and let  ( ) ( ) ( )( )txtxt n,...,1=x   be the 
vector of extractions at time  .t  An agent could be, for example, a farmer or any other 
decision-making unit that can extract water from the aquifer. 
 The aquifer's stock evolves as: 
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Let  ( )( )txy ii   denote benefits (e.g. agricultural production) accruing to economic 
agent  ,i   by extracting  ( )txi   water at time  .t   Then total benefits are defined as  
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The total cost of extracted water by agent  i  when the stock is  S  is given by  ixSC )(  
, where the common unit cost  )(SC   is nonincreasing and convex. 



Assume that a water authority manages the aquifer. The aim of the authority is to 
choose time paths for water extraction which will then be assigned to the individual 
agents, such that total benefits accruing from the use of the aquifer's water are 
maximized. This is a formal optimal control problem that determines a socially-
optimal solution for the aquifer, and which can be stated as 
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The sociallyThe socially--optimal solutionoptimal solution



The optimality conditions derived by the maximum principle imply that 
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Solution of the system of differential equations will determine the socially-optimal 
time paths  ( ) ( )( )ttS ∗∗ λ,   and the socially-optimal steady-state equilibrium  ( ),, ∞∞ λS   
defined as the limit of  ( ) ( )( )ttS ∗∗ λ,   as  ,∞→t   for the water stock  S   and its 

shadow value  ,   as well as the corresponding socially-optimal extraction paths  
( ) ( )( )., ttSxi

∗∗∗ λ   
If we consider that extractions decisions are taken individually where each economic 
agent has open access to the aquifer, that is, the aquifer is a common pool resource, 
there are three possible behavioural rules: 



Atomistic solutionsAtomistic solutions

1) Myopic equilibrium: The economic agent maximizes current profits and treats 
the groundwater stock level as fixed at a level  S   without taking into account the 
evolution of the water stock defined by (stock1). This myopic extraction rule 
determines extraction as: 

( ) ( ) )(: 00 SCxytx iii =
′

 
It is clear that by ignoring groundwater scarcity rents, extraction is higher than the 
socially-optimal,  ( ) ( )txtx ii

∗>0   and the resource tends to be depleted faster. Since this 
is basically an open access resource harvesting problem, this solution indicates 
tragedy of the commons. 



Open Loop Nash Equilibrium: The economic agent takes into account the evolution 
of the water stock, but maximizes the present values of his/her net benefits, by 
choosing his/her extraction path and by treating the extractions paths of the other 
agents as fixed at a best response level. The problem can be set up as an  n   player 
noncooperative differential game, where extraction paths  ( ){ }txi   are each agent's 
strategies. The strategy space is determined by the information structure of the game. 
In an open loop information structure individual extractions are defined as  

( ) ( ) nitShtx ii ,...,1 , :OL 0 ==  
 

Since each agent's strategy depends only on the initial water stock  S0,   the 
problem can be written as    
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The solution of the problem (OL1)-(OL2) corresponds to an Open Loop Nash 
Equilibrium (OLNE)



By comparing the socially-optimal solution with the OLNE it is clear that  λλ <OL  so
that the OLNE values resource stocks less than the social optimum and therefore 
extraction is higher, or  ( ) ( ).txtx i

OL
i

∗∗ >   It also holds that  ( ) ( ) ( )txtxtx i
OL

ii
∗∗ >>0  . This 

is because the individual extraction effects on costs are partially internalized in the 
OLNE, through the term  ( )OL

i
OL

i SxSC λ,)( ∗′

  in, so that extractions are less than the 
myopic rule. But internalization is not full as in the social optimum, where full 
internalization is obtained through the term  ( )λ,)( 1 SxSC i
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Feedback Nash Equilibrium: Under a feedback (FB) information structure the 
strategy depends on the current state of the system, that is the current water stock  

)(tS   and time. Therefore with an FB information structure individual extractions are 
defined as:  

( ) ( )( ) nittShtx i
FB
i ,...,1 , :FB ==  

The FB strategy described by (FB) is often referred to as a Markov perfect strategy in 
which the water stock is a `sufficient statistic' for the history of the game. 

Under the FB information structure the problem can be written as: 
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The ranking of extraction paths and steady state water stock is: 

xi
0t  xi

∗FBt  xi
∗OLt  xi

∗t

S0  SFB  SOL  S  
Thus management under the water authority leads to greater water conservation 
relative to atomistic equilibria. 



RegulationRegulation
The water authority can regulate the system by using as decentralized instruments 
water taxes or water quotas.  
Water quotas can be defined as a path of quotas such that individual water extractions 
do not exceed  ( ).txi

∗    
Water taxes depends on what assumptions are made about the behaviour of individual 
agents. The target of regulation through water taxes is to make the agents conditions 
for determining the optimal amount of water used equal to the socially-optimal 
condition.  
Under the tax scheme individual benefits are defined as  

( )( ) ( ) ( ) ( ),)( txttxSCtxy iiii τ−−   where  t  is a time flexible water tax. Thus water 
taxes can be defined as: 
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Steady State taxes 
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A numerical exampleA numerical example
To illustrate the above ideas we proceed with a numerical example.  
Let 
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 1.0,100 == bF  ,  ,01.0=ρ    10=n   
At the social optimum we obtain the steady-state levels of the water stock, its shadow 
value, and steady-state extractions as 
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1,099.03,91  

This steady state is a local saddle point since the eigenvalues of the corresponding 
modified Hamiltonian dynamic system (MHDS), are  ( ).473528.0,483528.0 −   
Solution for the OLNE provides a steady state  
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which has also the local saddle point property since the eigenvalues are  
( ).469934.0,17155.1−   It is clear that the OLNE leads to overexploitation of the 
aquifer relative to the social optimum.



The steady-state taxes are defined as: 
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The optimal policy function determines the optimal water extraction  ( )txi

∗   for each 
value of the water stock  ( ).tS   Thus the policy function can be written as  
( ) ( )( ),tStxi φ=∗    

The linearized policy function as  
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A water quota  q
ix   can then be set so that  ( )≤txq

i    ( ).txi
∗   



Groundwater Management: Groundwater Management: 
QuantityQuantity--Quality ProblemsQuality Problems

In a general quantity-quality (q-q) problem, the deterioration of the quality of a 
resource due to pollution results in the reduction of the effective use of the resource. 
Thus the management of a resource should account for both its use and the emission 
of the pollutants that influence the effectiveness of its use. In the case of groundwater 
management, water which is pumped by agents (farmers) from a common access 
aquifer for irrigation purposes, results in deep percolation that causes accumulation of 
pollutants in the aquifer. Pollution negatively affects the production of the agricultural 
output through the deterioration of the irrigation water quality.  
A q-q problem can be set as follows. Let  P   be the stock of pollutants (e.g. salinity) 
accumulated in an aquifer. The stock of pollutants is a negative externality in the 
production process. Thus the benefit function can be written as: 
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The evolution of the pollution stock is given by 
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In this model  ( )( )txg   is an increasing convex function which can be regarded as 
reflecting an emission function associated with pollution accumulation, while  0≥b   
reflects the aquifer's self cleaning capacity.



In this q-q problem, the social optimum is defined as the solution of the following 
problem: 
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RegulationRegulation
The time flexible water taxes are defined, under symmetry, as: 
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Furthermore, the corresponding steady-state taxes are: 
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A Numerical ExampleA Numerical Example
We assume that damages due to the pollution externality are given by a damage 
function  ( ) ,2/1 2P   so net benefits are defined as  

( ) ( ) 22/1/1ln PxSx ii −−  
We assume that the stock of pollution in the aquifer evolves according to  

( ) ixPnxvP ii  allfor  same  the,δ−=&  
where v   is a fixed unit emission coefficient and  0≥δ  reflects the aquifer's self
cleaning capacity.  
Assuming furthermore that  2.0=v   and  05.0=δ   we obtain the steady-state levels 
of the water stock, its shadow value, the pollution stock and its shadow cost, and 
steady-state extractions as 
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This steady state is a local saddle point Thus a two-dimensional stable manifold 
exists, and for any initial values for  S   and  P   in the neighborhood of the steady 
state, initial values for  λ   and  μ   and consequently  ix   can be chosen so that the 
system converges to the steady state.



Solution for the OLNE provides a steady state  
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Social Optimum 
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The steady-state taxes are defined as: 
( )( )
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It is clear that the water tax is higher relative to the no pollution case since it is 
adjusted to take into account the production externality. 



Concluding RemarksConcluding Remarks
The purpose of this paper was to present models related to The purpose of this paper was to present models related to 
groundwater management. Two models were developed: one groundwater management. Two models were developed: one 
in which only the quantity of the water in an aquifer was the in which only the quantity of the water in an aquifer was the 
management objective, and a second in which both the management objective, and a second in which both the 
quantity and the quality of the aquifer's water were managed. quantity and the quality of the aquifer's water were managed. 
In each model alternative management regimes were In each model alternative management regimes were 
examined: the sociallyexamined: the socially--optimal management problem, where optimal management problem, where 
the purpose was to manage water and pollution stock by the purpose was to manage water and pollution stock by 
maximizing total benefits in a given region, and the non maximizing total benefits in a given region, and the non 
cooperative or atomistic problems, where the objective of cooperative or atomistic problems, where the objective of 
each individual agent was to maximize own benefits. each individual agent was to maximize own benefits. 
We define decentralized water taxes both for the pure quantity We define decentralized water taxes both for the pure quantity 
and the quantityand the quantity--quality problem capable of regulating the quality problem capable of regulating the 
system so that the sociallysystem so that the socially--optimal outcome is achieved. optimal outcome is achieved. 
Numerical estimates confirming the theoretical analysis were Numerical estimates confirming the theoretical analysis were 
obtained for the cases of myopic and open loop equilibrium. obtained for the cases of myopic and open loop equilibrium. 
The complete characterization of feedback solutions and the The complete characterization of feedback solutions and the 
corresponding water taxes for general problems is a current corresponding water taxes for general problems is a current 
open research problem .open research problem .


