A multicriteria approach in drought risk assessment

Problems and Options

Institute of Hydrology Ruhr-University Bochum Prof. Dr. A. Schumann

A multicriteria approach in drought risk assessment

- 1. Introduction Risk Assessment why and how ?
- 2. Multiple Dimensions of Droughts
- 3. Indicators to specify socio-economic impacts
- 4. Conclusions

Risk Management Process (adapted from FELL & HARTFORD, 1997) **RISK MANAGEMENT Risk Control and** Decision Monitoring Communication Making **RISK ASSESSMENT Risk Mitigation Risk Acceptance Risk Evaluation** Values, Judgements **Option/Alternatives** Risk – based Decision Criteria Analysis **RISK ANALYSIS** Consequence **Risk Estimation Frequency Analysis** Analysis Failure Modes and Effects Analysis Hazard Identification **Scope Definition**

A multicriteria approach in drought risk assessment

- 1. Introduction Risk Assessment why and how ?
- 2. Multiple Dimensions of Droughts
- 3. Indicators to specify socio-economic impacts
- 4. Conclusions

Drought Definitions

Most general: drought originates from a deficiency of precipitation over an extended period of time, resulting in a water shortage for some activity, group, or environmental sector.

- **Meteorological drought** degree of dryness specified by deficiencies of precipitation and the duration of the dry period
- Agricultural drought- agricultural impacts resulting from deficiencies in the water availability for agricultural use
- Hydrological drought- significant lack of surface and subsurface water in relationship to the normal conditions over a long time period (results from meteorological drought)

Socioeconomic Drought

- Gap between supply and demand of economic goods such as
 - water,
 - food,
 - raw materials,
 - hydroelectric power,
 - transportation

as a result of a weather-related shortfall in water supply

 differs from other types of drought because its occurrence depends on the time and space processes of supply and demand

Example:

If a hydrological drought reduces hydroelectric power production: more expensive fossil fuels have to be used energy conservation measures have to be implemented Industrial and private consumption has to be reduced Energy intensive production is declining.

Copyright © 2004 National Drought Mitigation Center

Copyright © 2004 National Drought Mitigation Center

Copyright © 2004 National Drought Mitigation Center

A multicriteria approach in drought risk assessment

- 1. Introduction Risk Assessment why and how ?
- 2. Multiple Dimensions of Droughts
- 3. Indicators to specify socio-economic impacts
- 4. Conclusions

Economic impacts Agriculture, Forestry, Fishery

Additional costs and losses to agricultural producers

- Annual and perennial crop losses
- Damage to crop quality
- Income loss for farmers due to reduced crop yields
- Reduced productivity of cropland (wind erosion, long-term loss of organic matter, etc.)
- Plant disease
- Increased irrigation costs
- Cost of new or supplemental water resource development (wells, dams, pipelines)

Additional costs and losses to livestock producers

- Reduced productivity of rangeland
- Reduced milk production
- Forced reduction of foundation stock
- High cost/unavailability of water for livestock
- Cost of new or supplemental water resource development (wells, dams, pipelines)
- High cost/unavailability of feed for livestock
- Increased feed transportation costs
- High livestock mortality rates
- Disruption of reproduction cycles (delayed breeding, more miscarriages)
- Decreased stock weights

Loss from timber production

- Wildland fires
- Tree disease
- Impaired productivity of forest land
- Direct loss of trees, especially young ones
- Loss from fishery production
 - Loss of fish and other aquatic organisms due to decreased flows

Economic impacts

• General economic effects

- Decreased land prices
- Loss to industries directly dependent on agricultural production (e.g., machinery and fertilizer manufacturers, food processors, dairies, etc.)
- Unemployment from drought-related declines in production
- Strain on financial institutions (foreclosures, more credit risk, capital shortfalls)
- Revenue losses to federal, state, and local governments (from reduced tax base)
- Fewer agricultural producers (due to bankruptcies, new occupations)
- Rural population loss

Loss to recreation and tourism industry

- Loss of income by reduced tourism
- Loss to manufacturers and sellers of recreational equipment
- Losses related to curtailed activities: hunting and fishing, bird watching, boating, etc.
- Energy-related effects
 - Increased energy demand and reduced supply because of drought-related power curtailments
 - Costs to energy industry and consumers associated with substituting more expensive fuels (oil) for hydroelectric power
- Water Suppliers
 - Revenue shortfalls
 - Cost of water transport or transfer
 - Cost of new or supplemental water resource development
- Transportation Industry
 - Loss from impaired navigability of streams, rivers, and canals
- Decline in food production/disrupted food supply
 - Increase in food prices
 - Increased importation of food (higher costs)

Environmental Impacts

• Hydrological effects

- Lower water levels in reservoirs, lakes, and ponds
- Reduced flow from springs
- Reduced streamflow, hydro-morphological changes
- Loss of wetlands
- Estuarine impacts (e.g., changes in salinity levels)
- Increased groundwater depletion, land subsidence, reduced recharge
- Water quality effects (e.g., salt concentration, increased water temperature, pH, dissolved oxygen, turbidity)

• Damage to animal species

- Reduction and degradation of fish and wildlife habitat
- Greater mortality due to increased contact with agricultural producers, as animals seek food from farms and producers are less tolerant of the intrusion
- Disease
- Increased vulnerability to predation (from species concentrated near water)
- Migration and concentration (loss of wildlife in some areas and too many wildlife in other areas)
- Increased stress to endangered species
- Loss of biodiversity
- Damage to plant communities
 - Loss of biodiversity
 - Loss of trees from urban landscapes, shelterbelts, wooded conservation areas

Social Impacts

• Health

- Mental and physical stress (e.g., anxiety, depression, loss of security, domestic violence)
- Health-related low-flow problems (e.g., cross-connection contamination, diminished sewage flows, increased pollutant concentrations, reduced fire fighting capability, etc.)
- Reductions in nutrition (e.g., high-cost food limitations, stress-related dietary deficiencies)
- Loss of human life (e.g., from heat stress, suicides)

• Increased conflicts

- Water user conflicts
- Political conflicts
- Management conflicts
- Other social conflicts

• Reduced quality of life, changes in lifestyle

- Increased poverty in general
- Population migrations (rural to urban areas, migrants into other countries)

Trends in Drought Impacts

- Impacts are increasing in response to growing vulnerability resulting from increased pressure on limited water resources, increasing population etc.
- Post-impact response increases vulnerability.

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Cultural Organisation (UNESCO, Paris), 1999.

Demand for Evaluation Criteria (Indicators, Indices)

A multicriteria approach in drought risk assessment

- 1. Introduction Risk Assessment why and how ?
- 2. Multiple Dimensions of Droughts
- 3. Indicators to specify socio-economic impacts
- 4. Conclusions

Primary Data for Meteorological, Agricultural or Hydrological Drought Indicators

- Climate variables (e.g., precip., temp.)
- Reservoir and lake levels
- Soil moisture
- Ground water
- Snow pack
- Stream flow
- Vegetation

Common Meteorological, Agricultural or Hydrological Drought Indices

- Percent of Normal
- Deciles
- Palmer Drought Index
 PDSI, PHDI, CMI
- Surface Water Supply Index
- Standardized Precipitation Index
- Vegetation indices (NDVI, VCI, SVI)
- U.S. Drought Monitor
 - Composite index approach

Problems to define Drought Impact Indicators

- Creeping phenomena
- Spatial Heterogeneity
- Severity
- Vulnerability
- Long-Term Variability
- Averaging
 - Often temporal averages instead of critical periods
 - Often local problems are hidden by spatial averaging

RISK ASSESSMENT

Indicators have to be related to influencing factors

Effects of future developments of pressures should be reflected

Deterministic relationship

Aggregation in Space and Time

- Frequencies (risks, reliabilities)
- Durations
- Spatial Extent

As impacts differ within and between spatial scales, risk indicators should reflect who and what is at risk and why.

USGS: Map of 7-day average streamflow compared to historical streamflow for the day of the year (United States)

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://drought.unl.edu/dm

Released Thursday, September 30, 2004 Author: Brad Rippey, U.S. Department of Agriculture

Risk, Reliability Vulnerability – indicators to characterize temporal variability

•Reliability

probability that a criterion value stays within a predefined range of satisfactory values

•Resilience

number of times a satisfactory value follows an unsatisfactory value related to the total number of all time steps

•Vulnerability

statistical measure of the extent or duration of failure

A multicriteria approach in drought risk assessment

- 1. Introduction Risk Assessment why and how ?
- 2. Multiple Dimensions of Droughts
- 3. Indicators to specify socio-economic impacts
- 4. Conclusions

Actions to mitigate drought impacts

- Monitoring and assessment
- Water augmentation/reuse
- Public awareness/education
- Demand reduction/water conservation
- Water use conflict resolution
- Legislation

Information needed to define mitigation strategies

Legal and administrative mandates

Stakeholders

Data Management a	Ind Analysis
 Supply Augmentation Water transfer (inter/intra-basin) Existing Transfer Possible Conflicts Costs Degree of utilization Availability of local resources Improved storage Existing Storage Capacity Reliabilities Cost- Benefits 	 Demand Management Existing Water Use Efficiency Ownerships Infrastructure Efficiency of water use Economic incentives Political System Ownerships Control of water use Polluter-pays-principle Control Social aspects
 Water re-use Costs Technical feasibility Social aspects Socio-Economic Options Public participation Effects of conservation campaigns 	 Environmental Options Environmental standards Ecological status pressures Enforcement of existing legislation Impact assessment modelling experience

•

Environmental standards

WSM DSS- Approach for Water Management Planning

Thank you for your attention !

