

Republic of Tunisia

Ministry of Agriculture, Environment and water resources

Directorate of soil and water Conservation

optimal management of drought and water resources : Tunisian case

ARIDITY meeting

October 8-9, 2004 Palermo

A daily problem in Tunisia: WATER

és ressources hydriques. Le Conseil a pris connaissane de l'état d'avancement de ce lan dont la mise en cuvre a déaré en 1990 afin de mobiliser n milliard 400 millions de tères cubes d'eau. Jusqu'ici, un illiard de m' ont été déjà molisés, soi 71% des objectifs, xés par le plan, ce qui a permis éténdre les périmètres influés une asperincie de 256.000 hec-

Répartition of rainfall

Variability

Study of drought using long periods of observation

Deficit seasons: very frequent (30 et 50% from the observed years

Probability of apparition of a drought years succession

• Probability of drought in three successive years vary from 11% à 34% in Tunisia

Rgion	Prob. Y no drought / Y no D	Prob. Y D/Y D	Prob. 2 Y /Y D
Tunis 127 years	22%	15%	14%
N. West	19%	11%	11%
N. Est.	19%	23%	22%
Centre	23%	24%	23%
Sahel (Sea)	28%	23%	22%
South West	25%	35%	34%
South Est.	26%	21%	21%

Drought in Tunisia

- Strong Drought phenomenon is lived in Tunisia.
- A very dangerous natural phenomenon. It concerns population and all the economic system of the country..
- It is not predictable and not easy to manage
- negative influence on the aquatic and land ecosystems,
- negative influence on the quantity and quality of surface and groundwater (salinisation).

Drought in Tunisia

- Rainfall from 25 to 75 % < to the seasonal average in a large part of the country
- Increase of the minima of temperatures
- Decrease of food producing 10 to 40% compared to the average in the last 10 years
- Decrease of the production of grazing lands.,
- The irrigated areas constitute the solution and new water harvesting techniques have to be adopted..

Strategies to manage drought

- Reinforcement of hydraulic equipment : Dams, Small dams, aquifer's recharge
- Institutional reinforcement
- Research

Water resources

- Surface water :
- Ground water :
- Total :

2630 Millions of m³/year 1725 Millions of m³/year 4355 Millions of m³/year

Surface water

- North : 2110 Mm³/an (81%)
- Centre : 380 Mm³/an (14%)
- South : 140 Mm³/an
 (5%)

Mobilization of water resources (2002)

Big dams 21 : Dams 65 : Small dams 700 :

1612 Millions m³ 77,5 Millions m³ 69 Millions m³

the dam built became ready to store an important quantity of water which can be transported to users after reaching the lake .

Groundwater resources

Ground water resources High possibilities Middle Limited Resources

Water in Tunisia

- 33 billion of m³/year from rainfall
- 4355 Million m³/year potentially ready to be exploited
- 1725 Million m³/year to recharge acquifers
- 2630 Million m³/year in fluvial basins, with a capacity of harvesting in dams and small structures of 1750 Millions de m³

Inter-connections between watersheds

Transport of water from productive area to users area

Urban, touristy , and industrial managements

Cons. Agricultural managements.

Dams

Principal roads of transport of water (principal river basins)

Tunisian needs

Available in 2004 : 435 m³/year/inh

- Domestic needs : 30 m³/an/inh
- Industrial needs : 12 m³/an/inh
- Agricultural needs : 210 m³/an/inh

Total used in 2004: 252 m³/year/inh

Scenario1 : Actual French living standard

- 10 millions inhabitants x 510 m³/year = 5.1 M de m³/an
- For an estimated water resource of 4.35 Mm³/year
- Deficit = 0.75 billion of m³/year

Scenario 2 : Actual French living standard + needs for intensive irrigation

- 10 millions inhabitants x 1200 m³/year = 12 M m³/year
- For an estimated water resource of 4.35 Mm³/year
- Deficit = 7.65 billion m³/year

Developing techniques to save water

- General water loss from production to users is estimated at 30%
- Waste and improper use (10%)
- If we estimate the irreducible loss and improper use qt 22%: the possible economies are estimated at 780 millions of m³/year

Economy in agriculture

- Modernization of adductions and irrigation networks
- Ameliorating management of water resources
- Irrigation new Techniques
- Associative communities (AIC: collective interest association)
- Desalinisation (a new concept)

Repartition by of consummation 1984

Repartition of consummation 2004

Evolution of the price of water of agriculture

Conclusions

- Drought is an intrinsic data in Mediterranean climate: Its economic and social impact could be limited by an optimal institutional organization
- Irrigation permit to limit the impacts
- To manage drought in the short term it is necessary to create a data bank with different types of information:

climate, hydrological

agriculture, grazing lands,

economy

For the long term it is useful to create previsional models (such as hydrological models).