

EUREAU
European Union
of Water
Operators

Drought: Water Services Implication

Dominique Gâtel & Jacob Tompkins

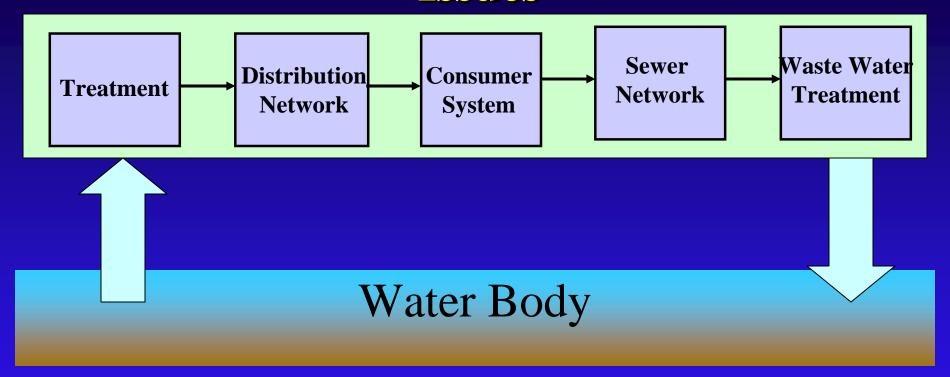
Scope of Presentation

• This is Eureau's position on short-term responses to a drought crisis

In the longer-term:

- Drought planning is part of overall water resource planning
- Factors such as abstraction licensing, Integrated River Basin Management, flooding, recharge and spatial planning should be considered

Background


- 2002 Flooding
- 2003 Droughts
- 2004 Low water levels in aquifers
- Climate change: Extreme event more likely in coming decades
- New EC consideration for potential actions

EUREAU 's Interest In Drought Issues

EUREAU 's Interest In Drought Issues

- Higher water demand for garden watering, personal use, swiming pools, fire-fighting etc.
- Lower availability of resources
- Higher competition for resources
- Reduction in raw water quality and warmer waters
- Higher vulnerability of networks due to soil compaction
- Environmental impact of abstraction

EUREAU 's Interest In Drought Issues

- Higher ecological impact of treated wastewater: low oxygen, high NH4, Fish toxicity
- Loss of water from leaking sewers
- Constraints on repairs & maintenance (both DW and WWTP): Stopped/delayed
- Civil and legal responsabilities relating to service failure?

Water Supply Side: Goals

- 1. Permanence of service:
 - Public Health (toilet flushing, cleaning etc.)
 - fire-safety alone warrants the permanence
 - maintaining essential services
- 2. Microbiological quality:
 - absolute safety, System wide appraisal of risks and effective controls
- 3. Chemical Quality—including Algal toxins, Endocrine disrupters
- 4. Customer acceptability appearance/taste

Water Supply: Risk Management

CUSTOMER CATCHMENT **PLANT NETWORK Catchment Plant** Network risk maps capacity pressure control **Available Process** quantity **Corrosion** control criteria control Quality trends Risk based Network models maintenance **Pollution** warning Reservoir management **Ecology**

Complaint handling

Backsiphonage protection

Customer advice packs

Emergency supply

Water efficiency

Water Supply and drought

CATCHMENT

PLANT

NETWORK CUSTOMER

Catchment risk maps

Available quantity

Quality trends

Pollution warning

Reservoir management

Ecology

Plant capacity

Process control criteria

Risk based maintenance

Network pressure control

Corrosion control

Network models

Complaint handling

Backsiphonage protection

Customer advice packs

Emergency supply

Water efficiency

Water Supply and drought: Catchment and environment

- Catchment water quantity and quality reduces during drought
- Drought may require additional abstraction this may affect Natura sites
- Water utilities have to consider Habitats, Birds and Environmental Liability Directives.
- This means early planning

Water Supply and drought

CATCHMENT

PLANT

NETWORK CUSTOMER

Catchment risk maps

Available quantity

Quality trends

Pollution warning

Reservoir management

Ecology

Plant capacity

Process control criteria

Risk based maintenance

Network pressure control

Corrosion control

Network models

Complaint handling

Backsiphonage protection

Customer advice packs

Emergency supply

Water efficiency

Water Supply and drought: Plant stop

- WTP Stop
 - Is current practice when scheduled for a couple of hours
 - Involves appropriate procedure for restart
 - Restart may require several hours to be complete and safe

Water Supply and drought: Plant stop

- WTP Stop for drought may last several days
- Several days may be required to restart:
 - Low pump speed to reach hydraulic gradient
 - Sedimentation basin to stabilise
 - Filter flushing: Sand F and GAC Filters
- Consequent loss of flexibility and resilience
- Very low output may not be technically achievable
- In many cities there is no spare treatment capacity and alternative supplies

Water Supply and drought

CATCHMENT

PLANT

NETWORK

CUSTOMER

Catchment risk maps

Available quantity

Quality trends

Pollution warning

Reservoir management

Ecology

•••

Plant capacity

Process control criteria

Risk based maintenance

•••

Network pressure control

Corrosion control

Network models

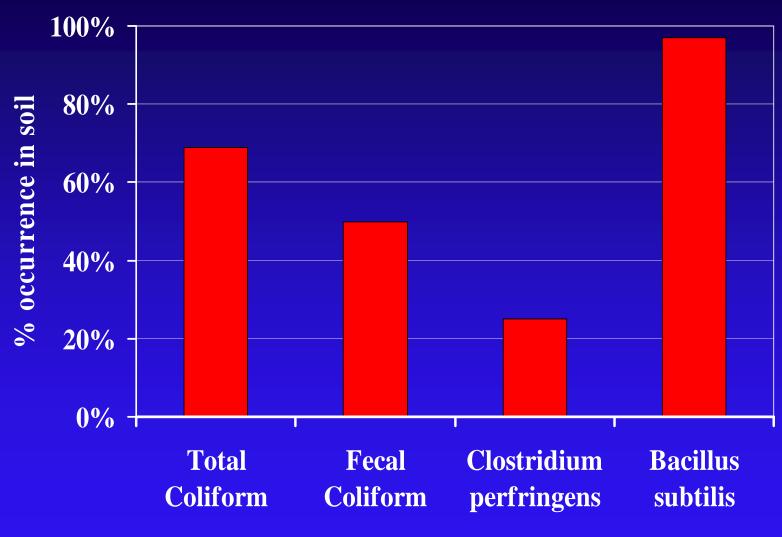
•••

Complaint handling

Backsiphonage protection

Customer advice packs

Emergency supply


Water efficiency

•••

Water Supply and drought: Network

Water Supply and drought: Network

Adapted from Kirmeyer et al. 2000

Water Supply and drought: Network

- If network pressure < environment
 - pipeline leaks provide a potential portal for entry of pathogens
 - heavy procedures in place to handle subsequent situations
 - Potability of water may be compromised
- Water supply must be \geq demand
- Network dewatering will lead to further leakage due to joints deterioration

Wastewater side and drought

- Higher wastewater residence time in sewers: H2S formation: odour, corrosion etc.
- Potential impact on rivers + bathing, shellfish waters
- Higher treatment level may be required: COD, PO4, ...
- Supplementary quality control
- Full-capacity required: No maintenance
- 60% to 80% of supply returns to the environment as wastewater a major resource

Water Supply and drought

CATCHMENT

PLANT

NETWORK CUSTOMER

Catchment risk maps

Available quantity

Quality trends

Pollution warning

Reservoir management

Ecology

Plant capacity

Process control criteria

Risk based maintenance

Network pressure control

Corrosion control

Network models

Complaint handling

Backsiphonage protection

Customer advice packs

Emergency supply

Water efficiency

Water Supply and drought: Customers

- Customer liaison must be part of drought planning
- Early information is essential to limit demand
- Combined messages from water utilities, Governments and environmentalists is needed
- Impact of essential use restrictions is questionable
- Safety must not be compromised
- Emergency supplies should be in place

Long term solutions

- Options:
 - Conservation and efficiency
 - Water reuse and recycling
 - Desalination technology
 - Increased storage (dams)
 - Water transfer
 - Mobile treatment unit for WWTP effluent reuse
 - Network optimisation

Long term solutions

- Water recycling/conservation/ efficiency: operational in industry
- Potential for development in water supply/wastewater management e.g.:
 - aquifer recharge possibilities
 - temporary tariff increase during drought
 - water reuse
 - full metering with remote sensing

Conclusions

- Public water supply must have priority
 - Public health, Fire safety, Essential services
- Failure to meet demand may contaminate the network
- Involve water utilities in the drought planning process and crisis management
- Water utilities should plan for drought
- Alternative supply must be available
 - Mobile treatment plant, bottles, tankers
- Funding must allow for drought planning

Thank you